The mechanization
of linguistic learning '

by Ray J. SoromoNoFF (U. S. A.),
Physicist, Semioy Scientist, Zator Co.

INTRODUCTION

This paper will describe a general technique for inductive inference,
followed by a brief description of some simple language types,
among them phrase structure languages. We will then describe a
routine that has been devised to discover grammar rules of phrase
structure languages. A brief discussion will be made of the appli-
cation of these methods to devising routines for learning to translate
between certain pairs of phrase structure languages.

INDUCTIVE INFERENCE

By ¢¢ inductive inference >’ I mean a process which involves the
observation of many cases of a phenomenon and the formulation of
a general rule that describes relationships between particular as-
pects of all of the observed cases. When the general rule has been
formulated, it can be used to predict as yet unobserved parts of
the same type of phenomenon, using data on parts that have been
already observed. :

A common form of inductive inference is prediction. We try to
predict the nature of a particular event on the basis of our knowledge
of events that precede it. The *“inductive rule’” spoken of above,
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becomes a relationship between events and the events that precede
them.

Suppose that John is sick on some days, and well on other days.
We would like to know a day in advance whether he will be sick or
well. To do this, we categorize days in various ways, and see if we
can find a category that correlates well with John’s health on the
following day. Some possible categories are :

1 — Days on which the peak temperature is 40 degrees F.

2 — Days on which it snows.

3 — Days on which John goes to a movie.

If John is sick one day out of ten — but we find that he is sick
on 8o percent of the days following snowy days, then category 2 —
is a useful category for this kind of prediction.

In general, all inductive inference problems are quite similar to
prediction problems. A kind of inductive inference problem that is
a minor variation of prediction, is called *¢ pattern completion ”’.
Here, we are given many instances of completed patterns. These
might be correctly worked arithmetic problems, or poems that
“ gcan . We then formulate general rules relating various parts of
the completed patterns. Then we are given an incomplete pattern,
and asked to complete it. Again the inductive rules that we devise
may all be viewed as methods of categorizing incomplete patterns
so that these categories correlate well with the correct completions
of these incomplete patterns.

In all inductive inference, our degree of success depends on-how
well we have constructed our categories. I have devised a general
method of category construction that appears to work well in the
few types of problems for which I have tested it — namely in
certain simple types of arithmetic problems, and in certain simple
types of linguistic problems.

The method of category construction that I use starts out with &
small set of primordial abstractions. Some possible kinds of pri-
mordial abstractions are words, phonemes, phrases, mathematical
symbols, sets of symbols, sets of sets of symbols, etc. Rules for
combining these abstractions to yield new abstractions may also be
regarded as abstractions. The nature of the set of primordial abstrac-
tions that is to be used will depend upon whether the inductive
inference problem to be solved is in mathematics, linguistics, etc.
The primordial abstractions are combined and transformed in accord
with certain rules to yield new, more complex abstractions, as well
as classification categories. The new abstractions and categories
can be combined again with each other and with old abstractions to
yield still further abstractions and categories. This process continues
as long as it is useful.
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Using the method we have outlined, we can create an enormous
number of abstractions and categories for prediction. In making a
particular prediction, we will often find that there are many different
categories that contain events preceding the event to be predicted.
As an example, suppose that while John was, indeed, sick on 8o
percent of the days following snowy days, he was sick but 1 percent
of the days following his visit to a movie. If John went to a movie
on a snowy day — what would be the probability of his being sick
on the following day ? Suppose, further, that we have too little data
on simultaneously snowy and movie days to make a prediction on
that basis.

One important method of weighing the two probability estimates,
makes the relative weights functions of the sample sizes that gave
rise to the probability estimates. Sample size alone, however, is
inadequate to resolve the difficulty. We must, in addition, consider
the a priori reasonableness or appropriateness of the categories
involved. We shall call this a priori appropriateness ¢ utility ’.
The utility of a category will depend partly upon how useful that
category has been in making predictions. It will also depend upon
how that category was constructed. It is useful to also assign utili-
ties to abstractions other than prediction categories.

The utility of any abstraction or prediction category will be an
increasing function of the utilities of the abstractions that help form
it. In addition, prediction categories are given greater utility if they
have been particularly successful in making predictions.

Recursion equations to implement quantitative utility computa-
tions have been devised, but they have not been adequately tested.

SUCCESSFUL APPLICATIONS OF INDUCTIVE
INFERENCE TECHNIQUES

A set of primordial abstractions and abstraction combination rules
has been devised for the problem of programming a general purpose
digital computer to ¢¢ learn ** to solve simple types of arithmetic pro-
blems, after having been given a suitable training sequence of
correctly worked examples[3].

Abstractions and combination rules have also been devised for
the problem of programming a computer to discover the grammar
rules of a phrase structure language, in a suitable training situation.

The inductive inference routines for arithmetic and grammar
using these abstractions and combination rules have not yet,
however, been programmed on a computer.
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Closely related to grammar discovery, is the problem of pro-
gramming a computer to discover the translation rules between two
languages, after having been given a large set of pairs of equivalent
sentences in the two languages. An example will be given in the
present paper of a pair of intertranslatable languages, in which
discovering the translation rules is equivalent to discovering the
grammar of a suitably generalized phrase structure language.

CHOMSKY’S THREE GRAMMAR TYPES

- A brief outline of some of the work of N. Chomsky will provide
the essential background for understanding my methods. In the
paper ¢ Three models for the description of language , [1]
Chomsky describes three grammar types of increasing complexity
and increasing power for approximating the grammars of natural
languages. The first of these, called the ¢ finite state langunage >, is
a language that is capable of being generated by a finite state
machine.

The second language (of which the first is a special case) is called
the “ phrase structure language . Sentences in this language
consist of concatenations of phrases such as might be associated
with various parts of speech. Examples are noun phrases and verb
phrases. Sentences in a phrase structure language can be generated
by starting with a certain word or phrase and making progressive
substitutions from a stated list. For example, starting with the
initial symbol ¢ S 7, the list of permissible substitutions might be :

S —NP:VP (ie., noun phrase: verb phrase)
NP - The: N

N — man, boy, toy, airplane
VP - V:NP

V — saw, sees, is, was

Using these substitutions, we can generate a sentence in the fol-
lowing manner :

S
. NP:VP
The:N: VP

The :N: V:NP
The:N:V:the: N
The boy: V:the: N
The boy saw the : N
The boy saw the- man

ON ON R L N H
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Arbitrarily long sentences can be produced by this method if we
allow substitutions that form ¢ loops . For example :

S »>a
a—=>bec
c—->da

A permissible generation sequence might then be :

192}

N O E G N A
oo
e

U_.S”

In certain cases it is useful to have an identity element, I, such
that Ia = al = a, for all possible phrases, a.

The most powerful of Chomsky’s languages is his *“ transforma-
tional language ”’. In this language, he starts with a set of ¢ kernel
sentences >’ that have been generated by a phrase structure gram-
mar. He performs various transformations on such kernel sentences
to obtain new sentences. Some of the transformations involve per-
mutations of the words and phrases, with possible deletions or pos-
sible additions of words and phrases. There is, for example, a simple
" transformation that relates the sentence. ¢ John has eaten the
pie *’ to the passive form of the same sentence, i. e. ¢* The pie has
been eaten by John .

DISCOVERING A GRAMMAR OF A LANGUAGE

In another paper [2], Chomsky and Miller deal with the problem
of devising a method for discovering the grammatical rules of a
language in a suitable training situation. They give one solution of
this problem for finite state languages.

I have found that some of the methods of mechanized inductive
inference, that had been successfully applied to arithmetic, could be
extended and applied to the discovery of the grammars of finite
state and phrase structure languages. While the mechanisms used
seem to be adequate for the description of transformational lan-
guages, it is not known whether the mechanisms could be used to
discover a transformational grammar adequate for a particular
body of text.
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The method devised for discovering the grammar rules of finite
state languages may not need as large a sample size for analysis as
the method of Chomsky and Miller [2], though the evidence for
this is not yet very conclusive.

The method used for phrase structure languages consists of
¢ factoring *° the set of acceptable sentences into the (Boolean)
union of ¢ products ** of certain sets of phrases. Here, we use the
the term ¢ product > to denote concatenation. If a, is a member
of the set of phrases «, and b; is a member of the set of phrases f,
then a; b; (the concatenation of g; and b,) will be a member of the
set of phrases designated by « X B. For example, suppose the set
of acceptable sentences was a b, @ ¢, & b, and bc. We could com-
pletely factor this set into the ¢¢ product ** of the sets « = (4, &) and
B = (b, C).

The method of factoring that is used here involves a ¢ teacher *’
If it is suspected that all of the members of « X 8 are acceptable
sentences, and only a few of these members have been given to the
machine — (sayv @ ¢ and b b ) — then to verify this ¢ suspicion ”’,
the machine would have to ask the teacher if ¢ b and b ¢ were
acceptable sentences. In the present method, the machine is allo-
wed to ask the teacher only questions of the type ¢* Is v an accep-
table sentence ? *> A ¢¢ teacherless ”’ training situation is discussed
in Appendix I. '

Usually it will not be possible to find a single pair of factors
that will yield the entire set of acceptable sentences, so we will
then use the union of several such ¢¢ products . For example, the
set of sentences a b, ac, b b, b¢, d e, d f, can be written as :

o X BUy X 8§ wherea = (a4, b) : 8 = (b, ¢),y = (d) and 3 = (¢, f)

It will be noted that in all cases of interest the set of acceptable
sentences is an infinite set, and that we will be given only a finite
sample of it. The factor sets that we form will at first have only finite
numbers of members, and so we cannot expect them to generate all
acceptable sentences. Later we will show how to generate factor
sets with infinite numbers of members.

Usually we can factor the acceptable sentence set in many diffe-
rent ways. We shall assign more utility to those factor pairs that
produce the largest numbers of acceptable sentences. This method
of utility computation is described in Appendix II.

If « is one of the factors of the set of acceptable sentences, we will
factor « in all possible ways. Each of these subfactors will, in turn,
be factored, and so on, thereby forming a large, highly branched tree.
The subfactors will also be assigned utilities in a manner similar to
that used for the factors of the set of acceptable sentences. ‘
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Acceptable
Sentences
4 4
/N N
xa X B Yy X 38
AN N 0 LN
7 l AN s AN
/ N AN
VN VN N AN VAN
a X By Y1 X9 g X G m X O By X N
/0
¢ A
AN
s X By Y2 X & & X &

It is clear that we will soon have an enormous number of factor sets.
We will use the utility concept to reduce this number to manageable
proportions by giving prior consideration to sets of high utility.

While we are forming the various factor sets, we also look for
inclusion relationships among them in the following manner.
Suppose that « X B is included in the set of acceptable sentences, and
x X dceand e X wC 3.

Set of Acceptable
Sentences

Furthermore, suppose we notice that many phrases of « are also
phrases of . We may then suspect that e includes «. If this were
true, we would have the recursion relations :

I XdcCca;eXwcd;ace andhencey X a X @ Ca
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Note that every member of ¢ is ¢ part of ”’ some member of «.
‘However, ¢ may still include « if they are infinite sets — even
though 3 and  contain members other than identity element.

Using the few known members of «, o and y we can use these recur-
sion relations to obtain as many new members of « aswe like. We
can test some of these new members of &, to see if o X f still gives
only acceptable sentences. If it does, then we may tentatively con-
clude that ¢ does indeed include .

If not, we will look for inclusion relations between other pairs of
phrase sets, e. g. « and o.

When a large enough number of such inclusion relations have
been found, it will be possible to generate all of the acceptable sen-
tences in the language, by using the resultant recursion relations,
and a small, but adequate set of initially known members of certain
of the sets. The set inclusion rules correspond directly to Chomsky’s
substitution rules, and they generate the set of all acceptable
sentences in the same manner that the substitution rules do. Some
modifications of the utility evaluation scheme that are brought
about by the recursion relations, are discussed in Appendix IIL.

It had been mentioned earlier that the number of factor sets
increased very rapidly, and that it was expedient to consider as
few of them as possible, providing one could still obtain the proper
recursion relations.

This is done through use of the utility concept. If ¢ X «© ¢ 8 and
3 is of high utility, then both ¢ and o are given high utilities. As
was mentioned before, factors that have high utilities are factored
earliest. Also, we first look for inclusion relations between factors of
high utility. If utility evaluationisnot used, the above method is an
exhaustive technique for trying all possible phrase structure gram-
mars that might fit. Since there are only a finite number of grammar
rules, such a procedure must, eventually, yield the correct grammar
— providing, of course, that we have an adequate training sequence
of examples. The utility evaluation yields a reasonable means of
ordering this exhaustive search, so as to greatly increase the proba-~
bility that the correct set of grammar rules will be found after a
relatively short search.

An analysis has been made of the effectiveness of utility evalua-~
tion in reducing search time. So far, the effectiveness seems very
likely, but has not been proved conclusively. The effectiveness is to
some extent corroborated by the fact that the above method has
been successfully used to obtain the grammar rules of a few simple
phrase structure languages.
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DISCOVERING MECHANICAL TRANSLATION METHODS

The method described above is of interest not only as a technique
for the discovery of grammar rules, but may, in certain cases, be
used to implement the learning of language translation by machine.

Consider two languages L; and L,, such that there exists a trans-
lation between L, and L,. In the simplest case, this will mean that
there is a one- to -one correspondence between the acceptable sen-
tences in L, and the acceptable sentences in L,.

Let us then construct a third ¢¢ language ”, L, in the following
way : The “¢ acceptable sentences ” in L, consist of ordered pairs
of sentences. The first sentence in each pair is a sentence from L, ;
the second is the corresponding sentence in L,.

To speak of L; as a ¢“ language *” implies a certain generalization
of the concept. The ¢ words *° of L, may be pairs of ordinary words ;
the ¢ phrases *’ of L, may be pairs of ordinary phrases — or there
may be no useful way to divide the sentences of L, into words and
phrases.

Knowing the grammar of L; will then be equivalent to being able
to translate from L, to L,. Here we interpret ¢ knowing the gram-
mar ”’ to mean that if a proposed sentence pair is given us, we can
use the grammar rules to determine whether that sentence pair is
in I.; or not. Another, more useful kind of grammar would be one
that would give methods to determine all possible legal sentences
that could contain a certain fixed phrase as part of them. In this
latter case, we need only present the grammar rules with a sentence
from L,, and if the grammar rules are to complete this partial sen-
tence of Ly to form an acceptable complete sentence in Lj, they
must give us the translation in L, of the sentence in ;.

The above discussion would be of little interest if the grammar
rules of L, were unreasonably complex. However, if I.; and L, are
phrase structure languages, then it is possible for L, to be a phrase
structure language. We shall give an example of such a situation.
The meaning of ¢ phrase structure language * in the case of L,
will become clear in the following development.

In L;, the sentences are ordered pairs of equivalent sentences
from L, and L,. The phrases and words of L, consist of paired
equivalent phrases and paired equivalent words from L, and L,.
Although there will be many phrase equivalence pairs and word
equivalence pairs in L; and L, in general, all words and all phrases
in L, need not have equivalences in L,.

To show how L may be a phrase structure language, we will give
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a set of substitution rules for L,, and show how sentences in L,
may be generated by using them.

5 A\/B A C D cC s
1. — X 2. | = | | 3 | = |
s b a a c d c 8

Here, the capital letters refer to words in L,, or to words that will
eventually become phrases in L,. Similarly, the small letters refer
to L,. The lines between the capital and small letters connect
equivalent words or phrases.

The generation of an acceptable sentence in L4 could be :

. S
|
s
2. A B
N
N
b a
3. C D B
— | |————
b c d
4. Sl D B
— l —
b S d
5. A B D B
2N
b b a d

Here (A B D B, b b a d) is an acceptable sentence in L;, and
bbadofL,isthe translation of ABDBofL,.

It is easy to show that L,, (the upper line of L) and L, (the lower
line of L;) are phrase structure languages. The substitution rules of
of L, are : ‘

1. S—-A B 2.A—-CD 3. C =S

Those of L, are :

I.s—>b a 2.a—->c d 3. C—>s



The derivation of A B D B, the sentencein L, is :

S

.AB
.CDB
.5DB
.ABDB

O N O N

The dérivation of b b a d, the sentence in L,, is :

S
.ba
.bcd
.bsd
.bbad

Ulpa W N

If, as in the above case, L, is a phrase structure language, then,
through a large sample of equivalent pairs of sentences from L, and
L,, we can discover the grammar rules of L; using a generalization
of the methods of grammar rule discovery that have been described
above.

The grammar rules obtained by the procedure outlined, will be
in a form that gives rules for creating all acceptable sentences. We
must transform these rules into a different set of rules for com-
pleting parts of acceptable sentences. In the case of phrase structure
languages, a transformation method has been found which appears
to be adequate.

It should be noted that if L, and L, are phrase structure languages,
L, may be a phrase structure language, but it need not be. It is
easy to devise counter examples, since a translation rule may be
any correspondence between the sentences of L, and L, On the
other hand, if L; is a phrase structure language, L, and L, must be
phrase structure languages. This may be readily seen by noting the
manner in which the derivations and grammars of L, and L, are
related to those of L, in the example above.

It might appear from the above example that if L; is a phrase
structure language, then the translation rule that L implies, always
consists of a word for word translation, followed by changes in
word order. In general, however, L, is capable of describing trans-
lation rules of significantly greater complexity. Words or phrases of
L, may be made to correspond to phrases or non-adjacent pairs of
phrases in L,. Also, L; can resolve certain cases of ambiguity of
word-for-word translation, by using contextual information.



It is also sometimes possible to devise translation rules utilizing
a translation language L,, which is a phrase structure language, in
which neither L; nor L, are phrase structure languages. In all such
cases L; ¢ L,. A simple example of such a situation is one in which
L, and L, are identical, and are essentially non-phrase structure
languages. In such a case L; is not a phrase structure language, vet
it can easily be imbedded in a larger L, that ¢s a simple phrase
structure language. ’

APPENDIX I

THE ““TEACHERLESS’® TRAINING SITUATION.

i we are not allowed to ask questions, the problem of finding a
grammar thatis consistent with a given fixed body of text is com-
plicated by the fact that there are always an infinite number of such
grammars. I't is possible, however, to define a ¢ simplest ”” grammar
from among all possible consistent grammars. Another important
condition is that the language defined should contain as *¢ few >’
sentences as possible, in addition to the fixed body of text. The
meaning of *few” must be suitably defined, since most languages
of interest contain an infinite number of sentences. A theoretical
method for finding such optimum gammars without the services of
a “¢ teacher ** has been devised, but the method involves an
excessively long search. No really practical solution to this problem
has been found for either finite state or phrase structure languages,
although a solution for either language type would be extremely

useful.

APPENDIX 11

THE_ METHOD OF UTILITY EVALUATION,

If @ and { are sets of phrases such that « X is included in the set
of acceptable sentences, and if « has %, members, and £ has ng
members, then o and § will each be given utilities of :

Uy == Ug = Fy(nq, 78)

T, is a symmetric function of its arguments. At present, it appears
that letting Fy(nq, #g) = nang will be satisfactory, but this functio-
nal form has not been tested sufficiently, and its limitations, if any,
are uncertain.



If 5 and § are sets of phrases such that y X § c «, with n, and 73
being the numbers of phrases in y and 3§ respectively, then :

Ux —_ US _— F2 (nx, na, '”fl, Ud)

F, is a symmetric function of #, and »s.
A tentative functional form for F, is :

#,msUx
Fz(“x; ng, Aa, UO(.) = —'x—'nz“_'

In this particular functional form, F, is the fraction of «’s phrases
that are contributed by y X 3, multiplied by Us.

APPENDIX III

1t should be noted that after one or more inclusion relationships
have been found, it becomes possible to generate an arbitrarily
large number of members of some of the sets of phrases. Using the
utility evaluation scheme that has been outlined, we would find that
we then had arbitrarily large utilities for these arbitrarily large
sets of phrases. One method to avoid the difficulties associated
with these arbitrarily large utilities is to limit the number of phrases
generated by an inclusion relation through its corresponding re-
cursion relation. The limit should be at a level that is just large
enough to give adequate corroboration to the hypothesis that the
inclusion relationship does, indeed, exist.

Discovery of new inclusion relationships will not otherwise modify
the utility evaluation scheme that has been described. If ¥y X3 € «
then Uy = Fy(ny, #s, 7a, Ux). If it were later discovered that y c &,
where € 54 8 and e 7 «, then U, would still be a direct function of
neither ne nor U.. However, the relation y c € will have been found
by noticing that it implements some sort of recursion relation. Such
a recursion relation would, in general, cause #, to be an increasing
function of # , and so U, would be functionally related to #. in an
indirect way. This consideration will not, however, modify the
functional relationship between U,, n,, #5, 7y and Us.
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